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We review the effective potential due to massive bulk scalar fields in higher-dimensional
warped brane models found in Flachiet al. (Quantum stabilization of moduli in higher
dimensional brane models, arXiv:hep-th/0301???, 2003) specializing it to a slice of
AdS6 compactified on the circle. This model contains two moduli that parametrize the
interbrane distance and the size ofS1, or equivalently the positions of the two branes.
Their values determine the Planck/EW hierarchy, in a combination of large volume and
redshift effects. It is found that the observed hierarchy is compatible with both moduli
stabilized by the Casimir forces without fine-tuning (except for the one needed to match
the cosmological constant). This contrasts with the Randall–Sundrum model, where
gauge fields in the bulk are needed.

KEY WORDS: extra dimensions; brane models; hierarchy problem; moduli
stabilization.

1. INTRODUCTION

The brane world scenario (Antoniadiset al., 1998; Arkani-Hamedet al.,
1998, 1999; Randall and Sundrum, 1999) has generated a great interest in the last
years, mainly thanks to its phenomenological applications in both particle physics
and cosmology. In this paper, we concentrate our attention on the understanding
of hierarchy problem that these models offer. Arkani-Hamedet al. (1998, 1999)
realized that in models withnextra dimensions of typical sizeL, fundamental cutoff
given byM, and matter confined on a 3+ 1 brane, the effective four-dimensional
(4D) Planck mass is given bym2

P ∼ (L M)nM2. Taking the cutoffM∼TeV, and the
present upper bound forL ∼ µm, we can easily obtain the large value formP ∼
1016 TeV. Since in this mechanism the size of the bulk space is large compared to
the fundamental scale 1/M, we shall call this alarge volumeeffect.

The Randall–Sundrum (RS) model (Randall and Sundrum, 1999) proposes
another very interesting possibility. In this case, there are two branes placed at the
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ends of a warped space forming a slice of AdS5. All the mass scales are of order
mP, and matter is assumed to live on the negative tension brane (with the smaller
wrap factor). In the 4D effective theory, the masses of the fields are redshifted by
the ratio of wrap factorsa = e−d/`, whered is the proper interbrane distance, and
` is the curvature radius of AdS5.

As in any model with extra dimensions, a set of scalar fields parametrizing
the background configuration (themoduli) appear in the effective 4D theory. At
the classical level, they are massless and some stabilization mechanism is required
in order for the whole setup to be consistent.

In the RS model, there is only one modulus (theradion) parametrizing
at the same time the interbrane distance and the electroweak/Planck hierarchy.
Goldberger and Wise (1999) proposed a stabilization mechanism essentially con-
sisting in a bulk classical scalar field with an ad hoc potential. This can generate a
sizeable mass for the radion compatible with a large hierarchy with one fine-tuning
corresponding to the cosmological constant. The possibility that the Casimir en-
ergy can stabilize naturally the radion was studied in the literature (Flachi and
Toms, 2001; Garrigaet al., 2000; Goldberger and Rothstein, 2000; Toms, 2000). It
was found that for gravitons and generic scalar fields, a fine-tuning is needed when
a large hierarchy is present (besides the tuning corresponding to the cosmological
constant), and moreover the mass for the radion is very small. In a recent work
(Garriga and Pomarol, 2002), it has been shown that the contribution due to bulk
gauge fields can stabilize the radion without fine-tuning.

The presence of warp factors in brane world models is a generic feature
of theories related toM theory. Some of these can be described by supergravity
theories with bulk scalar fields, and contain vacuum solutions (see, e.g., Braxet al.,
2002; Yaum, 2000, 2001) with warp factors different to the exponential present
RS. In particular, five-dimensional (5D) models with a power law warp factor were
considered in Garrigaet al. (2001). The computation and renormalization of the
effective potential is somewhat more involved in this case. It was found that for
sufficiently steep warp factor, the two moduli present could be stabilized without
fine-tuning. It was realized in Garrigaet al. (2001) that some models with more
extra dimensions reduce to this kind of theories once reduced to five dimensions.

Then, it is interesting to consider more general configurations with more extra
dimensions or even with branes of codimension greater than one. As a first step, here
we consider a simple generalization of the RS model, with a six-dimensional (6D)
bulk and 5D branes so that the full configuration is a slice of AdS6 compactified
on a circle, with bulk topology (S1/Z2)× M4× S1 and brane topologyM4× S1.
The model we are considering has the same warp factor for the internal spaceS1

and the Minkowski factor,M4. However, models with different warp factors can
be found in the literature (Gregory, 2000; Randjbaret al., 2000a), and will be the
subject of future research (Flachiet al., manuscrip in preparation). In passing, we
note that the phenomenology of such a scenario has been recently considered in
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Davoudiaslet al., (2002) and also that these types of solution allow to naturally
localize chiral fermions (Randjbaret al., 2000b).

This model qualitatively mimics the configuration present in the Hoˇrava–
Witten theory (Hoˇrava and Witten, 1996a,b; Lukaset al., 1999). The vacuum
configuration of this theory consists of an 11-dimensional space with topology
(S1/Z2)× CY6× M4 and different warp factors for the MinkowskiM4 and the
Calabi–Yau (CY6) factors. The two branes are of codimension 1 as well. In this
example the authors argued that there is a regime in which the size of the CY
manifold is much smaller than the length of the orbifold, and correspondingly
there is a cosmological period in which the space-time is effectively 5D. More
generally, if brane world scenarios are to be relevant at all for particle physics
and also link low energy physics with any more fundamental theory formulated
in higher dimensions, then it is interesting to consider brane world scenarios with
more “internal” space.

This paper is organized as follows. In Section 2 we present the 6D model,
its compactification on the circle, and the reduction to four dimensions, using the
results of Garrigaet al. (2001). We derive the couplings of the matter located
on the negative tension brane in Section 2.3. The possible values of the scales
involved in the model are discussed in Section 2.4. The computation of the po-
tential is outlined in Section 3 and given in more detail in the Appendices. We
discuss the stabilization mechanism offered by this potential in Section 4. We
end with the conclusions and some remarks related to Garrigaet al. (2001) in
Section 5.

Our notation is the following. We split the coordinates into the usual 4D
xµ, the coordinate along the orbifoldx5, and along the circleθ . The higher-
dimensionalbrane indicesa, b . . . run overµ and θ , and the 5D bulk indices
(after compactification onS1) α, β . . . run overµ andx5. This report is based on
a work done in collaboration with Flachiet al. (2003).

2. THE MODEL

In this paper we consider the 6D generalization of the RS model compactified
on S1, with two codimension-1 branes. The 6D action is given by

S6 = −M4
∫

d6x
√−g(R+3)− σ+

∫
d5x
√−g+ − σ−

∫
d5x
√−g−, (2.1)

whereR is the curvature scalar,g±ab are the induced metrics on the branes, andM
is the 6D Planck mass.

The metric describing AdS6 in conformal coordinate,

ds2 = a2(z)[ηµν dxµ dxν + R2 dθ2+ dz2] with a(z) = `/z, (2.2)
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is a solution of (2.1) provided (Flachi and Toms, 2001)

3 = −20/`2,

σ± = ±16M4/`, (2.3)

where` is the curvature radius of the bulk AdS6, andR is a fixed length scale
parametrizing the size of the extra circle.

2.1. Reduction to 5D

This model reduces to that of Garrigaet al. (2001) withq = 4 upon com-
pactification on the circle, keeping its size as a dynamical scalar field. To see this,
consider the following ansatz for the metric including the 5D gravitongαβ(xµ, y)
and thedilatonσ (xµ, y) (for simplicity we freeze the graviphoton corresponding
to the components (µ, θ ), of the metric),

ds2 = g(s)
αβ(xµ, y) dxα dxβ + e2σ (xµ,y) R2 dθ2. (2.4)

If we insert this ansatz into the action (2.1) and integrate out theθ dependence, we
obtain the 5D action2

S5 = −2πR

[
M4

∫
d5x

√−g(s) eσ
(
R(s) +3)+ σ+ ∫ d4x

√−g(s)+ eσ

+σ−
∫

d4x
√−g(s)−eσ

]
. (2.5)

Expressed in the 5D Einstein frame, given by

g(5)
αβ = e2σ/3g(s)

αβ , (2.6)

and in terms of the canonical scalar fieldφ = −2
√

2/3σ , we can rewrite this action
as

S5 = −M3
5

∫
d5x

√−g(5)

(
R(5)+ 1

2
(∂φ)2+3 eφ/

√
6

)
−σ5+

∫
d4x

√−g(5)+ eφ/2
√

6− σ5−
∫

d4x
√−g(5)− eφ/2

√
6. (2.7)

Here,g(5)±
µν is the metric induced byg(5)

αβ , M3
5 = 2πRM4 is the 5D Planck mass

andσ5± = 2πRσ±, the effective 5D brane tensions. This corresponds to one of the
scalar tensor models considered in Garrigaet al. (2001), withc = −1/

√
6. This

model has a vacuum solution of the form

ds2
(5) = a2

(5)(z)(dz2+ ηµν dxµ dxν),

2 The label(s) in the 5D metric signals that in this frame, the scaling symmetry present in this theory
(see Garrigaet al., 2001) corresponds toσ → σ+ const, and a scaling invariant metricg(s) → g(s).
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φ0(z) = −
√

6(β + 1)/β ln a(5)(z) with a(5)(z) = (z/`)β , (2.8)

and aS1/Z2 orbifold topology for the extra dimension, the power of the warp
factor a(5)(z) beingβ = −4/3. The scalar fieldφ, parametrizing the size of the
internal spaceS1, changes along the orbifold. From the point of view of this 5D
effective theory, the warp factor is a no longer an exponential of the proper distance
normal to the branes, so the bulk space is not AdS5. The reason for this is that we
have expressed the solution in the 5D Einstein frame which is related to the 6D
Einstein frame through (2.6).3

2.2. Reduction to 4D

This solution contains two physically meaningful parameters not determined
by the equations of motion, the radiusRof S1, and the proper interbrane distance
d = y+ − y−. To be precise, the physical size of the internal spaceS1 at the branes
is given byR± ≡ a±R, whicha± = a(z±), rather thanR. This suggests that we can
also describe completely the two-brane system specifyingR±, or evenz± instead.4

This choice is particularly suitable because in terms ofR± the effective potential
has an especially simple form.

In this paper, we treat the degrees of freedom associated to these (classically)
free parameters of the model in the so-calledmoduli approximation. This consists
in promoting these integration constants to 4D fields or moduli. The idea is that
since they correspond to flat directions in action (2.1), they can be easily excited
and are relevant at low energies. To obtain the 4D effective action describing the
moduli, we can proceed as in Garrigaet al.(2001) beginning from the 5D reduced
action (2.7), and promoting the brane locationsz± to xµ-dependent fields.5 In
terms of a 5D metric ansatz that includes the 4D graviton zero mode,

ds2 = a2
(5)(z)(dz2+ g̃µν(x) dxµ dxν), (2.9)

we can read off the result from Garrigaet al. (2001),

S4[ϕ±] = −m2
P

∫
d4x

√−g̃

{(
ϕ2
+ − ϕ2

−
)
R̃− 16

3
[(∂̃ϕ+)2− (∂̃ϕ−)2]

}
, (2.10)

where we have introduced

ϕ± ≡
(z±
`

)−3/2
= a3/2

± ,

3 Note that there are two notions ofpropercoordinate along the bulk space, the 6D and the 5D. This is
not the case for the conformal coordinate.

4 One important difference between the RS model and the model considered here is that, due to the
compactifiedS1 factor, the bulk isnothomogeneous in the orbifold direction.

5 In Flachiet al. (2003) it has been shown that the moduli action can be equivalently derived reducing
the theory directly from six to four dimensions.
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and the 4D Planck mass is given by

m2
P =

2

3
`M3

5 =
4π

3
`RM4. (2.11)

The modulus corresponding to the positive tension brane has a kinetic term with the
“wrong” sign. As already pointed in Garrigaet al.(2001) this does not necessarily
signal an instability, because it is written in a Brans–Dicke frame. One can easily
see that the kinetic terms for both moduli have the correct sign in the Einstein
frame.

Introducing the new variablesϕ andψ (Garrigaet al., 2001; Khouryet al.,
2001),

ϕ+ = ϕ coshψ andϕ− = ϕ sinhψ, (2.12)

the Einstein frame is given bŷgµν = ϕ2g̃µν In this frame, the action (2.10) takes
the form

S4[ϕ, ψ ] = −m2
P

∫
d4x

√
−ĝ

{
R̂+ 2

3
(∂̂ lnϕ)2+ 4

3
(∂̂ψ)2

}
, (2.13)

and now the kinetic terms are both positive definite.

2.3. Coupling of Moduli to Matter Fields

We note that the metric in the 4D Einstein frameĝµν does not correspond
to the metric on either of the two branes, and so matter on the branes will not
couple universally to it. Rather, 6D matter localized on the negative tension brane
couples universally tog−ab, the metric induced bygab at z= z− In the 5D theory
this corresponds to a universal coupling tog(s)−

µν (not g(5)−
µν ).

To work out the coupling ofϕ andψ to the matter located on the negative
tension brane, we note that this kind of matter couples universally to the induced
metric on the brane. Therefore, the action for the 5D matter fields9 (5)(xµ, x5) is
of the form (see (2.1)):

Smatt=
∫

d5x
√

g−L(5)
(
9 (5), g−ab

)
. (2.14)

Inserting the dimensional reduction ansatz (2.4), we obtain

Smatt=
∫

d4x dθ
√

g(s)− eσ (z−)L(5)
(
9(5), g(s)−

ab

)
×
∫

d4x dθ
√

g(s)− a−L(4)
(
9 (4), g(s)−

µν

)
, (2.15)

whereg(s)−
µν = a2

−g̃µν ,9(4)(xµ) are theS1 zero modes of the matter fields and
the coordinate volume factor 2πR has been absorbed in their normalization and
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couplings. Then, matter interacts only with the modulusa− through

Smod−matt= −
∫

d4x
√−g(s)−T

δa−
a−

, (2.16)

whereT = Tµνg
µν

(s)− + aL(4), and Tµν is the 4D energy momentum tensor of
the matter fields9 (4) computed with the metricg(s)−

µν , Tµν = −(2/
√

g(s)−)δSmatt/

δgµν(s)−. We note that this coupling of the moduli to the lagrangian is entirely due
to the circle being warped.6

Since a small perturbationδϕ− around some v.e.v.ϕ− can be expressed in
terms ofϕ andψ defined in (2.12) asδϕ− = a3/2δϕ + δψ ,7 we can express the
interaction with the canonical moduli (2.16) in the Einstein frame as

Smod−matt= −2

3

∫
d4x

√
−ĝ{T̂ δ lnϕ + a−3/2T̂ δψ}. (2.17)

Here,T̂ is the same asT but computed with the 4D Einstein frame metricĝµν , so
that T̂ = (a−/ϕ)4T . Defining the canonical fields

ϕ̂ = 2√
3

mP lnϕ and ψ̂ = 4√
3

mPψ,

we obtain the equations of motion for the moduli

ĥϕ̂ = 2√
3mP

T̂ and ĥψ̂ = 1√
6mP

a−3/2T̂ , (2.18)

so thatϕ̂ couples to the matter on the negative tension brane with a strength∼ 1/mP

andψ̂ , with a quite larger strength,∼ a−3/2/mP.

2.4. Scales and Hierarchy

In this section we discuss the constraints for both the the dynamical moduli
R± and the fixed scales,M andk, as well as the geometrical interpretation of the
Planck/EW hierarchy.

On the one hand, the smallest physical length scale is given by the size of
S1 at the negative tension brane,R− = a−R. This cannot be smaller than the
fundamental length of the theory,M−1. Since the warp factor of the circle is the
same as the Minkowski factor, the physical massesmS1 of the first KK excitations
along the circle are of order 1/R, for matter at eitherz+ orz−. Collider experiments
requiremS1 &T eV.

6 Actually,T coincides with the trace of the 5D energy momentum tensor.
7 In the case of our interest, a¿1 in order to have a large hierarchy arising from the warp factors,
as we explain in Section 2.4. Moreover, we can always take〈a+〉) = 1. So, with a good accuracy,
ϕ ≈ ϕ+ ∼ 1 andψ ≈ ϕ− ¿ 1.



P1: GXB

International Journal of Theoretical Physics [ijtp] pp924-ijtp-469737 September 26, 2003 16:15 Style file version May 30th, 2002

1376 Pujolàs

However, we advance here that the result for the potential can be expanded
as a power series inr± ≡ R±/`, valid when both combinations are small. In this
paper we focus on this regime, corresponding to the physical situation when the
size of the internal manifoldS1 is everywheresmaller than the interbrane distance
∼ `. Accordingly, this indicates that we have to assume that the separation between
the fundamental cutoffM and the curvature scale 1/` of the background is at least
of ordera. Supersymmetry might be needed to stabilize this hierarchy of scales,
so that in this model SUSY is not substituted by any other mechanism to stabilize
Planck/EW hierarchy. However, SUSY is a common ingredient in theories coming
from M theory, and the aim of this paper is to find out whether or not in such models
the quantum effects can stabilize the moduli. So, we can consider a scenario such
as a 6D SUSY theory with particles that get a mass of order the SUSY breaking
scale∼ 1/`.

On the other hand, the massmRSof the first KK excitations along the orbifold is
of ordera/`as in the RS model), and the bound from collider physics is (1/`)&a−1

TeV. This leads to consider the involved scales distributed as in Fig. 1.
Now we can obtain an expression for the EW/Planck hierarchy in this model.

Taking into account the considered values for the scales and moduli, and from
the relation between the 4D effective Planck mass and the higher-dimensional one
Eq. (2.11)

m2
P ∼ a−2M2,

we already note alarge volumefactora−2.
Because of the warp factor in (2.2), particles living atz−, with a physical

mass∼ 1/`, have a redshifted mass given by (a−/a+)(1/`) = a(1/`), as observed

Fig. 1. The smallest scalemRS is set to be∼ TeV. By the
condition thatS1 is everywhere smaller than the orbifold,
R±/`¿ 1, R= R+ is forced to lie a hierarchical factor
1/a above. SinceR−/R+ = a, R− lies another factor
1/a above. And we take the simplest possibility when
the fundamental cutoff is not far from this scale.
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from the brane atz+. Supposing that these are the particles in the Standard Model,
the EW/Planck hierarchy is then given by

h2 ≡ a2 1/`2

m2
P

∼ a2

RM(`M)3
∼ 10−32. (2.19)

Taking into account the optimal values for these scales, we obtain

h ∼ a3. (2.20)

In contrast with the the RS model, where the hierarchyh coincides with the ratio
of warp factors,a here there are two additional powers. Of these, one comes from
the large volumefactor noted earlier. The other one comes from considering the
masses of the particles of order 1/` instead ofM .

This shows how the problem of stabilization compatible with a large hierarchy
works. Having introduced a certain hierarchy∼ a between 1/` andM in (2.19),
and the scale of the physical masses of particles∼ 1/`, we wonder whether or not
the potential (3.17) can stabilize the moduliR± near the optimal valuesR+ . ` and
R− &1/M , i.e., so thath2 is enhanced by three more powers of the same hierarchy
a. If this happens, there are threeinput powers ofa in (2.19) and three more are
generated, in this model. We address this question in Section 4.

3. POTENTIAL INDUCED BY MASSIVE BULK SCALAR FIELDS

In this section we compute the contribution to the one-loop effective potential
due to a massive bulk scalar fieldχ , using dimensional regularization. Its action
is given by

Sχ = 1

2

∫
dD+1xχ [−h−m2]χ − 1

2

∫
dDx
√

g+m+χ2

−1

2

∫
dDx
√

g−m−χ2. (3.1)

We shall dimensionally regularize the Minkowskian directions only so that the
space-time topology isM D−1× S1× S1/Z2 with D − 1= 4− ε. The bulk equa-
tion of motion is[

∂2
z −

D − 1

z
∂z− (`m)2

z2
+ h0+ R−2∂2

0

]
χ = 0, (3.2)

with h0 the 4D flat D’Alembertian. This equation admits a factorization in modes
of the form

χn,m,k = eikµxµ+imθ/R fn(z), (3.3)
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with fn solving [
∂2

z −
D − 1

z
∂z− (`m)2

z2
+m2

n

]
fn(z) = 0, (3.4)

where−kµkµ = m2
n + (m/R)2 are the physical masses. This implies

fn(z) = z(D/2)(An Jν(mnz)+ BnYn(mnz)), (3.5)

where8

ν =
√

D2/4+m2`2. (3.6)

Imposing Dirichlet (appropriate for an oddZ2 parity field) boundary condi-
tions on both branes, we obtain the equation that defines implicitly the discrete
spectrum ofmn,

F (D)(m̃n) = Jν(m̃na)Yν(m̃n)− Jν(m̃n)Yν(m̃na) = 0, (3.7)

where we have defined

m̃n = mnz−, a = z+
z−
= R−

R+
. (3.8)

Even Z2 parity fields obey boundary conditions of Neumann type∂y −
m±/ 2)χ |± = 0, and the spectrum is determined by

F (N)(m̃n) = j+ν (m̃na)y−ν (m̃n) j−ν (m̃n)y+ν (m̃na) = 0, (3.9)

where we defined

j±ν−1(z) ≡ Jν−1(z)+ α± − ν + D/2

z
Jν(z),

y±ν−1(z) ≡ Yν−1(z)+ α± − ν + D/2

z
Yν(z), (3.10)

whereα± = −m±`/2
We shall compute the effective potential in dimensional regularization. First,

we shall work out the dimensionally regularized potentialV D, and then we need
to subtract thecovariantdivergent pieceVdiv. This is of the form (Garrigaet al.,
2001)

Vdiv = 1

(D − 5)

1

AaD
6/2,

whereaD
6/2 is the relevant Seeley–DeWitt coefficient in six dimensions, we have

regularized the dimensions orthogonal to the orbifold asD = 5− ε, andA is the

8 A coupling to the curvature of the form−ξRχ2 can be automatically included by adding−ξD(D +
1)/`2 to the bulk massm and±4ξD to the boundary massesm±. For Dirichlet fields the latter are
not relevant, but we keep them for generality.
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4D comoving volume
∫

d4−εx. Schematically, then we have

V = lim
D→5

[V D − Vdiv]. (3.11)

The dimensionally regularized potentialV D is given by

V D ≡ µε
∑

n

∑
m

1

2

∫
dD−1k

(2π )D−1
ln

[
k2+m2

n + (m/R)2

µ2
)

]
. (3.12)

Performing the momentum integrals in (3.12),

V D = − 1

2(4π )2

(4πµ2R2)s+2

R4
0(s)

∑
n,m

(m2+ R2m2
n)−s. (3.13)

We can split the sum in three parts: the contributions coming from the orbifold zero
mode (corresponding ton = 0), the circle zero mode (corresponding tom= 0),
and the nonzero modes,∑

n,m

(m2+ R2m2
n)−s = 2

∞∑
m=1

m−2s +
∞∑

n=1

(2mn)−2s + 2

×
∞∑

n,m=1

(m2+ R2m2
n)−s (3.14)

= 2ζR(2s)+
(

R

z−

)−2s

ζ̂ (2s)+ 2
∞∑

m=1

m−2s

×
∞∑

n=1

(1+ R2m2
n/m2)−s, (3.15)

whereζR is the Riemann zeta function and the generalized zeta functionζ̂ has been
evaluated in the literature (Flachi cand Toms, 2001; Garrigaet al., 2000, 2001;
Goldberger and rothstein, 2000). Here we have assumed that the bulk field is even
otherwise the orbifold zero mode would not be present. The problem now reduces
to evaluating the third term of Eq. (3.14). Defining

x = R

mz−
,

each term in the sum overm can be expressed as a contour integral∑
n

(1+ x2m̂2
n)−s = 1

2π i

∫
C

dt(1+ x2t2)−s F ′(t)
F(t)

= sx2

π i

∫
C

t dt(1+ x2t2)−s−1 ln F(t), (3.16)

on the contourC of Fig. 2.
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Fig. 2. The contour used to sum 3.16.

This can be analytically continued to the physical value ofs= −2, and we do
it in Appendices A and B for Dirichlet and Neumann boundary conditions. Here,
we simply quote the final result forV, in terms ofr± ≡ R±/`,

V(r+, r−) = 1

(4π )2R4
[V+(r+)+ V−(r−)v(r+, r−)], (3.17)

with asymptotic expressions for

V±(R±) ∼ ±a−1
1

r±
+ a0

± a(±)
1 r± + a(±)

2 r 2
± ± a(±)

3 r 3
±

+ a(±)
4 r 4
± ln r± ± a(±)

5 r 5
± ln(r±µ±`)+

∞∑
k=6

a(±)
i (±r±)k, (3.18)

where the coefficientsa(±)
k are polynomials of degreek on the bulk massmand the

corresponding brane massm±. The first coefficienta−1 is a numerical constant and
the sign ofa0 depends only on the type of boundary condition. We also introduced
one renormalization constant for each braneµ±. We see from (2.1) that a finite
renormalization of the brane tensionsδσ± gives a term in the potential of the form

1

`4
R5
±δσ± (3.19)

Consequently, in the following we will include the Inµ± term insideδσ±. We
note that (3.18) are only asymptotic expansions and are valid only in the regime
r± < 1. The nonlocal partυ(r+, r−) is given in the Appendices. Here, we note that
it is safely negligible in the limit of everywhere small internal spaceR± ¿ `, and
large warpinga¿ 1 (see Eqs. (A16) and (A19)).
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4. STABILIZATION

We shall focuss the discussion on the stabilization of the moduli in the regime
of large orbifold sizeR±/`¿ 1 and large warpinga¿ 1, because under this con-
dition the nonlocal part of the potentialυ(R+, R−) is negligible, and the potential
separates asV ∼ (1/(4π )2R4)[V+(R+)+ V−(R−)]. To further simplify the struc-
ture ofV, we assume a matter content with equal number of bosons and fermions.
This makes the two first terms inV± to vanish because neithera0 nora−1 depends
on the mass of the field.

To stabilize the moduliR±, we shall look for the values ofδσ± (correspond-
ing to a finite renormalization of the brane tensions) such that the conditions
of extremum∂r±V = 0 together with having an effective 4D cosmological con-
stant,V |min ≈ 10−122m4

P can be satisfied. SinceV+ is essentially a polynomial in
r+ = R+/` with coefficients.1, the extrema are typically atR+ ∼ `. In order for
the result (3.18) to be convergent, we will assume that actuallyR+.`. We shall
neglect the higher powers in the potential except for the brane tension renormal-
ization terms. So the zero cosmological constant and the extremum condition for
r+ are

V+ ≈ a+1 r+ + a+2 r 2
+ + . . .a+5 r 5

+ ln(µ+`r+) = 0

∂r+V ≈ a+1 + 2a+2 r+ + . . .+ 5a+5 r 4
+[ln(µ+`r+)+ 1/5] = 0. (4.1)

We identify In(µ+ `) as part of the finite renormalization of the brane tensions
δσ+/`5. With this, we find a solution of this equation forr+ ∼ −4a+1 /(3a+2 )9 , and

`5δσ+ ∼ a+1
3a+5

1

r 4+
.

For ther− modulus, we have

∂r−V ≈ −a−1 − 5a−5 r 4
−[ln(µ−`r−)− 1/5] = 0, (4.2)

and now we simply choose

`5δσ− ∼ − a+1
5a+2

1

r 4−
to get a v.e.v equal tor−. Thus, the sizes of the renormalization of the brane tensions
are

δσ+ ∼ 1/`5,

δσ− ∼ a−4/`5. (4.3)

9 We can easily check that for a Dirichlet field this ratio is' 0.6, in agreement with the assumption
made earlier. For the Neumann case, this ratio depends on the boundary and bulk masses, so that
generically, it can be made small.
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Comparing these to the bare values|σ±| ∼ M4/` ∼ a−4(1/`)5, we conclude that
we have to do one fine-tuning. However, this corresponds to matching the observed
value of the cosmological constant.

Next, we ask for the masses that this mechanism induces for the moduli ˆϕ

andψ̂ . A straightforward evaluation of∂2
ϕ̂±V |min = (∂ϕ̂±r±)2∂2

r±V±|min gives10

m2
ϕ̂ ∼ a+2 h−2/3(1/mm)2 ∼ KeV2,

m2
ϕ̂ ∼ −a−1 TeV2. (4.4)

The mass for the modulus ˆϕ generated by the effective potential is large enough
not to violate Newton’s law at short distances. Its small coupling to matter on the
negative tension brane, suppressed by a planckian factor (see Eq. (2.18)), renders
it unobservable in collider experiments. On the other hand, we obtain a mass for
ψ̂ of order of someTeV. From Eq. (2.18), this modulus couples to matter with a
strength of order 1/108 TeV, which is much larger than planckian but still leads to
unobservable effects.

We conclude that, depending on the bulk field content, the effective potential
can stabilize both moduli without fine-tuning, although the price to pay in this
model is the introduction of a separationa ∼ 105 between 1/` andM. It is shown
in Flachiet al. (2003) that this feature improves with a larger number of flat extra
dimensions. That is, in toroidal compactifications of a slice of higher-dimensional
AdS the effective potential gives sizeable masses to the moduli, and the separation
betweenM and 1/` decreases.

5. DISCUSSION AND CONCLUSIONS

We have presented the computation of the effective potential induced by
massive bulk scalar fields nonminimally coupled to curvature in a slice ofAdS6

compactified on a circleS1, for both Dirichlet and Neumann boundary conditions.
This space-time is a generalization of the RS model with more extra dimensions,
and we consider it as a first approximation to brane models arising inM theory
with warped additional compact extra dimensions.

We have focussed on the situation when the size of the additional spaceS1 is
smaller than the orbifold size. We have shown the equivalence of the 6D (Einstein–
Hilbert) theory compactified on the circle with the scalar–tensor 5D theory with
an exponential potential (2.7), considered in Garrigaet al. (2001). We followed
the analysis presented there, on the basis of themoduli approximation, to obtain
the effective 4D gravity with two scalar fields (themoduli) of Brans–Dicke type
(2.13), describing the position of the branes on the orbifold (or equivalently, the

10Sinceζ ′(−3) > 0, and theβ1 tabulated in the Appendices for scalar fields, the condition for negative
a−1 is that either we have fermion fields, or is the bulk field nonminimally coupled.
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interbrane distance and the radius ofS1). As well, we have derived the couplings of
each modulus to higher-dimensional matter located on the negative tension brane.

The computation of the effective potential is especially simple when the in-
terbrane distance is larger thanS1. We have proposed the setup of scales that
corresponds to this regime, and shown that the Planck/EW hierarchy is generated
by a combination of a large volume effect (Antoniadiset al., 1998; Arkani-Hamed
et al., 1998, 1999) and a redshift induced by the warp factor (Randall and Sundrum,
1999). In this model, we have to introduce some hierarchical separationa ∼ 105

between the fundamental cutoff and the curvature scale of the background. How-
ever, the separation between the EW scale and the Planck massmP is given by
a3.

The resulting Casimir energy (3.17, 3.18) can stabilize the moduli at locations
compatible with the observed Planck/EW hierarchy∼ 1016 without fine-tuning
(except for a tuning of the positive tensionσ+, needed to match the cosmological
constant), generating large enough masses to give unobservable effects. However,
the particular choice of the parameters of the model (M, 1/`, and the mass of the
particles) can be thought of a tuning. Anyhow, as shown in Flachiet al. (2003)
these features improve when we consider a toroidal compactification of a slice of
higher-dimensionalAdSspaces.

Garrigaet al. (2001) raised the question that the path integral measure of a
bulk scalar field in the effective 5D theory (2.7) quantized on the warped vacuum
configuration (2.8) is ambiguously defined. The nontrivial profile of the scalarφ

permits to define many different conformal frames, all of them equivalent at the
classical level. However, the path integral measure can be defined covariantly with
respect to any of them. It turns out that the term proportional to

ln z+
z4+
+ ln z−

z4−

in the potential depends on this choice. Several arguments can be given in favor of
possible ‘preferred’ frames. For instance, with a measure covariant with respect to
the 5D Einstein frame metric, this term is present. But if one chooses covariance
with respect to the 6D Einstein frame metric, there is no such term. However,
in the model presented here, there is no ambiguity in the choice of the measure
since the 6D theory is Einstein–Hilbert gravity, and there is no scalar. In the
computation presented here, the choice of the measure shows up when we subtract
the divergences in the potential Eq. (A20), covariant precisely with respect to the
6D Einstein frame metric. As a result when we take into account both the 5D modes
(theS1 KK zero mode) together with the 6D ones (the KK modes excited alongS1

as well), we have found that there is a remaining contribution of this form (see Eqs.
(3.17) and (3.18). Anyhow, it should be noted that these Coleman–Weinberg-like
terms do not play a very relevant role in stabilizing the moduli.
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6. APPENDIX A: DIRICHLET BOUNDARY CONDITIONS

In this Appendix we evaluate the sum (3.16) and show the main steps leading
to Eqs. (3.17) and (3.18) for the effective potential. For the sake of clarity we
consider the case of Neumann boundary conditions separately. The integral

I =
∫
C

t dt(1+ x2t2)−s−1 ln F (D)(t), (A1)

appearing in (3.16) is defined forRs > 1/2 but it can be continued to the left in the
planes, andx = R/mz− = r−/m. Using the asymptotic expansions of the Bessel
functions for large argument

Kν(ρ) =
√
π

2ρ
e−ρCν(ρ),

Iν(ρ) = eρ√
2πρ

Cν(−ρ)+ o(e−ρ), (A2)

where

Cν(ρ) ∼
∞∑

k=1

0(ν + k+ 1/2)

k!0(ν − k+ 1/2)
(2ρ)−k,

we can work out the leading term in the asymptotic expansion forF (D)(t),

F (D)(t) ∼ σ i e−σ i(1−a)t

π
√

at
(1+ o(1/t)) atCσ , (A3)

with σ = ± andC± the upper and lower halves of the contour in Fig. A1. Multi-
plying and dividing by the asymptotic form ofF (D) (A3) inside the logarithm, we
can splitI into

I = I1+ I2 ≡
∑
σ=±

{∫
Cσ2

t dt(1+ x2t2)−s−1 ln
(− σ i tπ

√
a eσ i (1−a)t F (D)(t)

)
(A4)

−
∫
Cσ2

t dt(1+ x2t2)−s−1 ln
(− σ itπ

√
a eσ i(1−a)t

)}
. (A5)
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Fig. A1. We can deform the contourC in figure asC1 and
C2 in order to commuteI1 and I2.

Here, since the poles of the integrand lie on the real axis, we have deformed the
integration contour toC1,2 for each piece (see Fig. A1).

The integralI2 can be readily evaluated,

I2 =
∑
σ

σ

∫ ∞
0
ρ dρ(1+ x2ρ2)−1−s ln

(− σ iπ
√

aρ eσ i(1−a)ρ
)

=
∫ ∞

0
ρ dρ(1+ x2ρ2)−1−s[−iπ + 2(1− a)ρi]

= −π
2

1

sx2
i +
√
π

2

0(s− 1/2)

0(1+ s)

1− a

x3
i. (A6)

This integral converges forRs > 1/2, and the result suggests itself as the analytic
continuation to the left of the complex plane ofs.

We are ready to work out the contribution from this part ofI to the effec-
tive potential, for the Dirichlet boundary conditions. From (3.14) and (3.13), and
performing the sum overm, this is given by

− 1

(4π )2

(4πµ2R2)s+2

R4
0(s)

(
−1

2
ζR(2s)+

√
π0(s− 1/2)

0(s)
ζR(2s− 1)

× (1− a)
`

R−

)
, (A7)

which is finite ats→−2. Since an odd parity bulk field has no orbifold zero
mode, these are all the contributions of this form that we have for the Dirichlet
field (see Eqs. (3.13) and (3.14)),

1

(4π )2

1

R4

[
1

2
ζ ′R(−4)− 1

945

1z

R

]
, (A8)

where1z≡ z− − z+.
To computeI1, we separate the integration along the imaginary axis from 0

to the branch point±i/x and from the branch point to±∞,

I1 =
∫ 1/x

0
ρ dρ(1− x2ρ2)−s−1 ln

[
π
√

aρ e−(1−a)ρFD(iρ)
]
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+ e−i(s+1)π
∫ ∞

1/x
ρ dρ(x2ρ2− 1)−s−1 ln

[
π
√

aρ e−(1−a)ρFD(iρ)
]

−
∫ 1/x

0
ρ dρ(1− x2ρ2)−s−1 ln

[
π
√

aρ e−(1−a)ρFD(−iρ)
]

−e−i(s+1)π
∫ ∞

1/x
ρ dρ(x2ρ2− 1)−s−1 ln

[
π
√

aρ e−(1−a)ρFD(−iρ)
]

= −2i sin[(s+ 1)π ]
∫ ∞

1/x
ρ dρ(x2ρ2− 1)−s−1 ln

(
π
√

aρ e−(1−a)ρFD(iρ)
)
,

valid for −1/2 < Rs < 0. Here we used thatF D(−z) = F D(z). The analytic
continuation ofF D to the imaginary axis gives

FD(iρ) = 2

π
[ Iν(ρ)Kν(aρ)− Iν(aρ)Kν(ρ)]. (A9)

We can rewriteI1 as

I1 = 2i

x2
sin(πs){IK (a, x)+ II (a)+ V(D)(a, x)}, (A10)

with

IK (a, x) ≡
∫ ∞

1
y dy(y2− 1)−s−1 ln

(√
2ay

πx
eay/x Kν(ay/x)

)
,

II (x) ≡
∫ ∞

1
y dy(y2− 1)−s−1 ln

(√
2πy/x e−y/x Iν(y/x)

)
,

V(D)(a, x) ≡
∫ ∞

1
y dy(y2− 1)−s−1 ln

(
1− Iν(ay/x)Kν(y/x)

Iν(y/x)Kν(ay/x)

)
, (A11)

and we note that the two first terms converge for−1/2 < Rs < 0, whereas the
last converges forRs < 0.

Using the asymptotic expansions ofKν and Iν (A2), we can analytically
continue this integral to the relevant points= −2 and, as we will see, we will
obtain an asymptotic expansion in powers ofR±/` < 1 for II ,K . Defining the
coefficientsβk as

ln Cν(ρ) ∼
∞∑

k=1

βk

ρk
,

we expand the integrand for smallx, and performing they integrals∫ ∞
1

dy(y2− 1)−1−sy1−k = 0(−s)0(s+ k/2)

20(k/2)
, (A12)
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we obtain

IK (a, x) ∼ 0(−s)

2

∞∑
k=1

0(s+ k/2)

0(k/2)

βkxk

ak
. (A13)

Doing the same forII (x), we have

II (x) ∼ 0(−s)

2

∞∑
k=1

0(s+ k/2)

0(k/2)
βkxk + o(e−2/x). (A14)

Now we turn toV(D)(a, xs), which is already finite fors= −2. Keeping the
first term in the asymptotic expansion of the Bessel functions (A2), we obtain

V(D)(a, x) ∼
∫ ∞

1
dy(y3− y) ln

(
1− e−2(1−a)y/x

)
= −1

8

x2

(1− a)4

{
4(1− a)2 Li 3

(
e−2(1−a)/x

)
+ 6(1− a)x Li4

(
e−2(1−a)/x

)+ 3x2 Li 5
(
e−2(1−a)/x

)}
(A15)

Since the argument of the polylogarithms is very small in the region we are con-
sidering, we can approximate Lik(z) ≈ z. Recalling thatx = r−/m and summing
overm, to leading order we find

∞∑
m=1

m4V(D)(a, r−/m) ∼ −1

2

r 2
−

(1− a)2
e−2(1−a)/r− . (A16)

Thus, this contribution is safely negligible in the limit of small internal space size
R− ¿ `.

Ignoring it, we can sum overm the contribution coming fromI1, using
Eqs. (A10), (A11), (A13), and (A14). Since this is a power series inm, the sum
will give rise to Riemann zeta functions. Recalling thatx = r−/m, we find

0(s)
∞∑

m=1

m−2s sx2

π i
I1 = s

π
sin(πs)0(s)0(−s)

∞∑
k=1

0(s+ k/2)

0(k/2)

× ζR(2s+ k)βk[r k
+ + (−r−)k] +O

(
r 2
−

(1− a)2
e−2(1−a)/r−

)
(A17)

Since we are interested in this expression nears= −2, we see that the divergent
parts come from the0 functions fork = 2, 4. However, sinceζR(z) has a zero at
z= −2, the pole coming fromk = 2 is cancelled. Fork = 4, instead, we have a
pole becauseζR(0) is finite and nonzero. There is another pole ins coming from
the divergence in the Riemann zeta functionζR(z) at z= 1, that is, fork = 5.

To the contribution from the modes excited along theS1, given by (A8)
together with (A17), we have to add the contribution from the circle zero mode
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(see Eq. (3.14)). This coincides with the potential in the RS model and has been
computed in the literature (Flachi and Toms, 2001; Garrigaet al., 2000, 2001;
Goldberger and Rothstein, 2000; Toms, 2000),

1

(4π )2

[{(
1

ε
+ ln 2π

2
− γ

2
+ 1

2
ln(4πµ2`2)

)
β4+ β ′4

}(
1

z4−
+ 1

z4+

)

+ β4

(
1

z4−
ln
(z−
`

)
+ 1

z4+
ln
(z+
`

))
+ I

0
K

z4+
+ I

0
I

z4−
+ V

0
(D)(a)

z4−

]
+O(ε),

(A18)

whereI0
I andI0

K are unimportant constants that can be computed as in Garriga
et al. (2000, 2001), and

V0
(D)(a) =

∫ ∞
0

dρ ρ3 ln

(
1− Iν(aρ)

Iν(ρ)

Kν(ρ)

Kν(aρ)

)
. (A19)

This function behaves asa2ν for a¿ 1, so it gives rise to a negligible contribution
to the potential.

We see that the divergence in the contribution due to the circle zero mode
Eq. (A18) is exactly cancelled by the pole corresponding tok = 4 in Eq. (A17). So,
we are left with the (higher-dimensional) divergence corresponding tok = 5 only.
This divergence is removed subtracting the appropriate combination of geometrical
invariant in the (D − 1)+ 1+ 1 regularized space-time, given by the Seeley–
DeWitt coefficienta6/2. Since our space is maximally symmetric, all the geometric
invariants are proportional to some power of the curvature radius and are equivalent
to brane tension terms. So, the computation ofa6/2 is trivial up to a global numerical
factor. On the other hand, this can be fixed imposing that the pole term is exactly
cancelled. With this, we obtain

Vdiv = 1

ε

1

AaD
6/2 ∝

1

ε

1

`5

[(
`

z+

)5−ε
−
(
`

z−

)5−ε]
R= 1

ε

[
1

z5+
− 1

z5−

]
R

+
[

ln(z+/`)
z5+

− ln(z−/`)
z5−

]
R+ finite (A20)

whereA = ∫ d4x is the comoving 4D volume. Comparing with (A17), we see that
the global constant factor must be 4β5/3. The firstβ coefficients are listed below.

Finally, adding up (A8), (A17), (A18), and (A20), we find

V(R±) ∼ 1

(4π )2R4

[ ∞∑
k=−1

ak
{
r k
+ + (−r−)k

}+ a4
{
r 4
+ ln r+ + r 4

− ln r−
}

+a5
{
r 5
+ ln(µ`r−)− r 5

− ln(µ`r−)
}+ I 0

K r 4
+
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+(I 0
I + V0

(D)(a)
)
r 4
− +O(e−2(1−a)/r− )

]
, (A21)

where we have redefined the renormalization constantµ again, and the coefficients
ak are

a−1 = 1

945
,

a0 = 1

2
ζ ′R(−4),

ak = 4βk

(k− 4)(k− 2)
ζR(k− 4), for k = 1, 3, 6, 7, 8. . . .

a2 = −2ζ ′R(−2)β2 for k = 2,

a4 = β4,

a5 = 4

3
β5. (A22)

For Dirichlet boundary conditions, the values of the firstβ coefficients, which
depend only on the bulk mass of the fieldm, are

β1 = ((m`)2+ 6)/2,

β2 = (−(m`)2− 6)/4,

β3 = −(m`)2((m`)2+ 6)/24,

β4 = ((m`)4+ 9(m`)2+ 18)/8,

β5 = ((m`)6− 10(m`)4− 168(m`)2− 432)/80. (A23)

From this, it is clear that the effective potential induced by bulk fields can be
cast as (3.17) and (3.18), understanding that for Dirichlet boundary conditions the
coefficientsa±j = aj .

7. APPENDIX B: NEUMANN BOUNDARY CONDITIONS

For the Neumann boundary conditions, we first realize thatF (N)(t) ∼ t−2 for
t → 0. Thus, if we use the same integral representation on the same contourC1

as in the previous case, we obtain an unwanted contribution from this point (a
‘zero mode’ contribution that has already been taken into account in Eq. (3.14)).
However, we can get rid of this contribution, consideringt2F (N)(t) instead of
F (N)(t). Obviously, this does not affect the result sincet2 has no zero inside
C. Moreover, it allows us to deform this contour intoC1 without crossing any
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singularity. So in this case the appropriate integral representation is11

∞∑
n=1

(1+ x2m̂2
n)−s = 1

2π i

∫
C

dt(1+ x2t2)−s d

dt
ln
(
t2F (N)(t)

)
= sx2

π i

∫
C

t dt(1+ x2t2)−s−1 ln
(
t2F (N)(t)

)
. (B1)

Multiplying and dividing inside the logarithm by the leading asymptotic be-
havior oft2F (N), except for a minus sign (which is the phase thatt2 acquires when
we integrate alongC1, now we splitI into

I = I1+ I2 ≡
∑
σ=±

{∫
Cσ

1

t dt(1+ x2t2)−s−1 ln
(
σ iπ
√

at eσ i(1−a)t F (N)(t)
)

(B2)

−
∫

Cσ
2

t dt(1+ x2t2)−s−1 ln(σ iπ
√

a eσ i(1−a)t/t)

}
. (B3)

The integralI2 can be readily evaluated,

I2 =
∑
σ

σ

∫ ∞
0
ρ dρ(1+ x2ρ2)−1−s ln(σ iπ

√
a eσ i(1−a)ρ/ρ)

=
∫ ∞

0
ρ dρ(1+ x2ρ2)−1−s[iπ + 2(1− a)ρi]

= π

2

1

sx2
i +
√
π

2

0(s− 1/2)

0(1+ s)

1− a

x3
i. (B4)

As before, this integral converges forR > 1/2, and we continue the result to the
left of the complex plane. We note that the only difference with respect to the
Dirichlet case is the sign of the first term. Taking into account that in the Neumann
case we also have the contribution coming from the orbifold zero mode in (3.14),
we get

1

(4π )2

1

R4

[
−3

2
ζ 1

R(−4)− 1

945

1z

R

]
. (B5)

To computeI1, we separate the integration along the imaginary axis from 0 to the
branch point±i /x and from the branch point to±∞,

I1 = −2i sin[(s+ 1)π ]
∫ ∞

1/x
ρ dρ(x2ρ2− 1)−s−1 ln

(
π
√

aρ e−(1−a)ρF (N)(i)ρ)
)
,

(B6)

11In the Dirichlet caseF (D) ∼ constant fort → 0, so we do not need any power oft to smooth it.



P1: GXB

International Journal of Theoretical Physics [ijtp] pp924-ijtp-469737 September 26, 2003 16:15 Style file version May 30th, 2002

Quantum Stabilization of Moduli in a Slice of AdS6 Compactified onS1 1391

valid for −1/2 < Rs < 0. Here we used thatF N(−z) = F N(z). The analytic
continuation ofF N to the imaginary axis gives

F (N)(iρ) = 2

π

[
i+ν−1(ρ)κ−ν−1(aρ)− i−ν−1(aρ)κ+ν−1(ρ)

]
, (B7)

where now

i±ν−1(ρ) ≡ Iν−1(ρ)+ α
± − ν + D/2

ρ
Iν(ρ),

κ±ν−1(ρ) ≡ Kν−1(ρ)
α± − ν + D/2

ρ
Kν(ρ). (B8)

We can rewriteI1 as

I1 = 2i

x2
sin(πs)

{
Ik(a, x)+ Ii (a)+ V (N)(a, x)

}
, (B9)

where

Ik(a, x) ≡
∫ ∞

1
y dy(y2− 1)−s−1 ln

(√
2ay

πx
eay/xk−ν−1(ay/x)

)
,

Ii (x) ≡
∫ ∞

1
y dy(y2− 1)−s−1 ln

(√
2πy/x e−y/xi+ν−1(y/x)

)
,

V (N)(a, x) ≡
∫ ∞

1
y dy(y2− 1)−s−1 ln

(
1− i−ν−1(ay/x)κ+ν−1(y/x)

i+ν−1(y/x)κ−ν−1(ay/x)

)
.

(B10)

As in the previous case, the last term is finite forRs < 0 behaves, to leading order,
like

V(N )(a, x) ∼ −1

2

r 2
−

(1− a)2
e−2(1−a)/r− . (B11)

From (A2), we can obtain the asymptotic expansions foriν−1 andκν−1,

κ±ν−1(ρ) =
√
π

2ρ
e−ρC±ν−1(ρ),

i±ν−1(ρ) = eρ√
2πρ

C±ν−1+ o(e−ρ), (B12)

with

c±ν−1(ρ) = Cν−1(ρ)+ α
± − ν + D/2

ρ
Cν(ρ).
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Defining the coefficientsβ±k through

ln c±ν−1 ∼
∞∑

k=1

β±k
ρk

,

the expression analogous to (A17) that we obtain is

0(s)
∞∑

m=1

m−2s sx2

π i
I1 = s

π
sin(πs)0(s)0(−s)

∞∑
k=1

0(s+ k/2)

0(k/2)
ζR(2s+ k)

× [β+k r k
+ + β−k (−r−)k

]+O( r 2−
(1− a)2

e−2(1−a)r−

)
.

(B13)

Subtracting the divergences as in the previous case, we obtain for Neumann
boundary conditions a potential of the form

V(r±) ∼ 1

(4π )2R4

[ ∞∑
k=−1

{a+k r k
+ + (−1)ka−k r k

−}

+ {a+4 r 4
+ ln r+ + a−4 r 4

− ln r−} + {a+5 r 5
+ ln(µ`r−)− a−5 r 5

− ln(µ`r−)}

+ Io
k r 4
+ +

(
Io

i + Vo
(N)(a)

)
r 4
− +O

(
e−2(1−a)/r−)] , (B14)

where

V0
(N)(a) =

∫ ∞
0

dρ ρ3 ln

(
1− i−ν−1(aρ)

i+ν−1(ρ)

κ+ν−1(ρ)

κ−ν−1(aρ)

)
, (B15)

I0
i andI0

k are unimportant constants defined as in Garrigaet. al.(2000, 2001), and
the coefficientsa±k are

a±−1 =
1

945

a±0 = −
3

2
ζ ′R(−4)

a±k =
4β±k

(k− 4)(k− 2)
ζR(k− 4) for k = 1, 3, 6, 7, 8. . .

a±2 = −2ζ 1
R(−2)β±2 for k = 2,

a±4 = β±4
a±5 =

4

3
β±5 . (B16)
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For Neumann boundary conditions, the values of the firstβ coefficients, depending
on the bulkm and branem± masses of the field,

β±1 = (2+m±`+ (m`)2)/2

β±2 = (−4+ 8m±`− (m`)
2+ 2(m`)2)/8

β±3 = (8+ 12m±`− 12(m±`)2+ (m±`)3+ 6(m`)2− 6m±`(ml)2− (m`)4)/24

β±4 = (−16− 32m±`− 48(m±`)2+ 16(m±`)3− (m±`)4− 8(m`)2

−48m±`(m`)2+ 8(m±`)2(m`)2
− − 8(m`)4)/64

β±5 = (32+ 80m±`− 40(m±`)2+ 100(m±`)3− 20(m±`)4+ (m±`)5

−16(m`)2− 20m±`(m`)2+ 100(m±`)2(m`)2− 10(m±`)3(m`)2

−20(m`)4+ 30m±`(m`)4+ 2(m`)6)/160.

From these results it is straightforward to show that the effective potential induced
by bulk fields can be generally written in the form of Eqs. (3.17), and (3.18).
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