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We review the effective potential due to massive bulk scalar fields in higher-dimensional
warped brane models found in Fla@tial. (Quantum stabilization of moduli in higher
dimensional brane models, arXiv:hep-th/0301???, 2003) specializing it to a slice of
AdSs compactified on the circle. This model contains two moduli that parametrize the
interbrane distance and the sizeS) or equivalently the positions of the two branes.
Their values determine the Planck/EW hierarchy, in a combination of large volume and
redshift effects. It is found that the observed hierarchy is compatible with both moduli
stabilized by the Casimir forces without fine-tuning (except for the one needed to match
the cosmological constant). This contrasts with the Randall-Sundrum model, where
gauge fields in the bulk are needed.

KEY WORDS: extra dimensions; brane models; hierarchy problem; moduli
stabilization.

1. INTRODUCTION

The brane world scenario (Antoniadis al, 1998; Arkani-Hamecet al,
1998, 1999; Randall and Sundrum, 1999) has generated a great interest in the last
years, mainly thanks to its phenomenological applications in both particle physics
and cosmology. In this paper, we concentrate our attention on the understanding
of hierarchy problem that these models offer. Arkani-Haraeedl. (1998, 1999)
realized thatin models withextra dimensions of typical site fundamental cutoff
given byM, and matter confined on a81 brane, the effective four-dimensional
(4D) Planck mass is given g2 ~ (L M)"M?2. Taking the cutofM ~ TeV, and the
present upper bound far ~ um, we can easily obtain the large value fop ~
106 TeV. Since in this mechanism the size of the bulk space is large compared to
the fundamental scaleNl] we shall call this darge volumeeffect.

The Randall-Sundrum (RS) model (Randall and Sundrum, 1999) proposes
another very interesting possibility. In this case, there are two branes placed at the
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ends of a warped space forming a slice of Ad&ll the mass scales are of order

mp, and matter is assumed to live on the negative tension brane (with the smaller
wrap factor). In the 4D effective theory, the masses of the fields are redshifted by
the ratio of wrap factora = e~9/¢, whered is the proper interbrane distance, and

£ is the curvature radius of AdS

As in any model with extra dimensions, a set of scalar fields parametrizing
the background configuration (tmeodul) appear in the effective 4D theory. At
the classical level, they are massless and some stabilization mechanism is required
in order for the whole setup to be consistent.

In the RS model, there is only one modulus (ttaelion) parametrizing
at the same time the interbrane distance and the electroweak/Planck hierarchy.
Goldberger and Wise (1999) proposed a stabilization mechanism essentially con-
sisting in a bulk classical scalar field with an ad hoc potential. This can generate a
sizeable mass for the radion compatible with a large hierarchy with one fine-tuning
corresponding to the cosmological constant. The possibility that the Casimir en-
ergy can stabilize naturally the radion was studied in the literature (Flachi and
Toms, 2001; Garrigat al., 2000; Goldberger and Rothstein, 2000; Toms, 2000). It
was found that for gravitons and generic scalar fields, a fine-tuning is needed when
a large hierarchy is present (besides the tuning corresponding to the cosmological
constant), and moreover the mass for the radion is very small. In a recent work
(Garriga and Pomarol, 2002), it has been shown that the contribution due to bulk
gauge fields can stabilize the radion without fine-tuning.

The presence of warp factors in brane world models is a generic feature
of theories related tt theory. Some of these can be described by supergravity
theories with bulk scalar fields, and contain vacuum solutions (see, e.geBxax
2002; Yaum, 2000, 2001) with warp factors different to the exponential present
RS. In particular, five-dimensional (5D) models with a power law warp factor were
considered in Garrigat al. (2001). The computation and renormalization of the
effective potential is somewhat more involved in this case. It was found that for
sufficiently steep warp factor, the two moduli present could be stabilized without
fine-tuning. It was realized in Garrigat al. (2001) that some models with more
extra dimensions reduce to this kind of theories once reduced to five dimensions.

Then, itis interesting to consider more general configurations with more extra
dimensions or even with branes of codimension greater than one. As afirst step, here
we consider a simple generalization of the RS model, with a six-dimensional (6D)
bulk and 5D branes so that the full configuration is a slice of Ad@npactified
on a circle, with bulk topology$'/Z,) x M* x S and brane topologiv* x S'.

The model we are considering has the same warp factor for the internal Space
and the Minkowski factorM#. However, models with different warp factors can

be found in the literature (Gregory, 2000; Randjbtal., 2000a), and will be the
subject of future research (Fladtial, manuscrip in preparation). In passing, we
note that the phenomenology of such a scenario has been recently considered in
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Davoudiaslet al., (2002) and also that these types of solution allow to naturally
localize chiral fermions (Randjbat al., 2000b).

This model qualitatively mimics the configuration present in theada—
Witten theory (Hoava and Witten, 1996a,b; Lukat al, 1999). The vacuum
configuration of this theory consists of an 11-dimensional space with topology
(St/Z,) x CYg x M* and different warp factors for the Minkowski* and the
Calabi—Yau (CY) factors. The two branes are of codimension 1 as well. In this
example the authors argued that there is a regime in which the size of the CY
manifold is much smaller than the length of the orbifold, and correspondingly
there is a cosmological period in which the space-time is effectively 5D. More
generally, if brane world scenarios are to be relevant at all for particle physics
and also link low energy physics with any more fundamental theory formulated
in higher dimensions, then it is interesting to consider brane world scenarios with
more “internal” space.

This paper is organized as follows. In Section 2 we present the 6D model,
its compactification on the circle, and the reduction to four dimensions, using the
results of Garrigeet al. (2001). We derive the couplings of the matter located
on the negative tension brane in Section 2.3. The possible values of the scales
involved in the model are discussed in Section 2.4. The computation of the po-
tential is outlined in Section 3 and given in more detail in the Appendices. We
discuss the stabilization mechanism offered by this potential in Section 4. We
end with the conclusions and some remarks related to Gaetigh (2001) in
Section 5.

Our notation is the following. We split the coordinates into the usual 4D
x*, the coordinate along the orbifolkkP, and along the circl@. The higher-
dimensionalbraneindicesa, b ...run overu and#, and the 5D bulk indices
(after compactification o8') «, 8 ... run overu andx®. This report is based on
a work done in collaboration with Flachkt al. (2003).

2. THE MODEL

In this paper we consider the 6D generalization of the RS model compactified
on S, with two codimension-1 branes. The 6D action is given by

S = —M4fd6x\/—_g(R+A)—a+/d5x~/——g+ —a,/d%/—— -, (2.1)

whereR is the curvature scalagy; are the induced metrics on the branes, &hd
is the 6D Planck mass.
The metric describing AdsSin conformal coordinate,

ds® = a®(2)[n,, dX* dX” + R?de? 4+ dZ] with a(2) = ¢/z, (2.2)
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is a solution of (2.1) provided (Flachi and Toms, 2001)
A = —20/¢2,
oy = £16M%/¢, (2.3)

where is the curvature radius of the bulk AgSandR is a fixed length scale
parametrizing the size of the extra circle.

2.1. Reduction to 5D

This model reduces to that of Garrigaal. (2001) withq = 4 upon com-
pactification on the circle, keeping its size as a dynamical scalar field. To see this,
consider the following ansatz for the metric including the 5D graviggy{x”, y)
and thedilaton o (x*, y) (for simplicity we freeze the graviphoton corresponding
to the componentgy ), of the metric),

ds? = g9(x¥, y) dx dx? + " VR2 dg2, (2.4)

If we insert this ansatz into the action (2.1) and integrate oud thependence, we
obtain the 5D actioh

S =-27R |:M4/ d®x,/—g & (R(S) +A) + oy / d*x/~ g+ &

o_/d"'x,/—g(s)_e"] (2.5)

Expressed in the 5D Einstein frame, given by
gf) /3 Sg (2.6)

and in terms of the canonical scalar field= —2,/2/30, we can rewrite this action
as

1
S = _|v|53/d5x,/—g(5) <R(5) + E(a¢>)2 +A e"’/“é>

—054 / d*x /=g €28 - / d*xy/—ge) €% (2.7)
Here,g{* is the metric induced bggf,?, M2 = 27 RM* is the 5D Planck mass

andasi = 27 Ro, the effective 5D brane tensmns This corresponds to one of the
scalar tensor models considered in Garegal. (2001), withc = —1/+/6. This
model has a vacuum solution of the form

dst) = aG)(D(dZ + n,, dx* dXY),

2The labe® in the 5D metric signals that in this frame, the scaling symmetry present in this theory
(see Garrigat al, 2001) corresponds ® — o+ const, and a scaling invariant metgt® — g,
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$0(2) = —v/6(B + 1)/B InaE)(2) with ae)(2) = (z/6)”, (2.8)

and aS'/Z, orbifold topology for the extra dimension, the power of the warp
factor a)(z) being 8 = —4/3. The scalar field, parametrizing the size of the
internal spaces!, changes along the orbifold. From the point of view of this 5D
effective theory, the warp factor is a no longer an exponential of the proper distance
normal to the branes, so the bulk space is notAd&e reason for this is that we
have expressed the solution in the 5D Einstein frame which is related to the 6D
Einstein frame through (2.8).

2.2. Reduction to 4D

This solution contains two physically meaningful parameters not determined
by the equations of motion, the radiRof S, and the proper interbrane distance
d =y, — y_. To be precise, the physical size of the internal syt the branes
is given byR; = a. R, whicha, = a(z.), rather tharR. This suggests that we can
also describe completely the two-brane system specifingr evere,. instead
This choice is particularly suitable because in term&ofthe effective potential
has an especially simple form.

In this paper, we treat the degrees of freedom associated to these (classically)
free parameters of the model in the so-calieatuli approximationThis consists
in promoting these integration constants to 4D fields or moduli. The idea is that
since they correspond to flat directions in action (2.1), they can be easily excited
and are relevant at low energies. To obtain the 4D effective action describing the
moduli, we can proceed as in Garrigigal. (2001) beginning from the 5D reduced
action (2.7), and promoting the brane locatiansto x*-dependent fields.In
terms of a 5D metric ansatz that includes the 4D graviton zero mode,

ds’ = af)(2)(dZ + §,.,(x) dx* dx"), (2.9)

we can read off the result from Garrigaal. (2001),
= ~ 16~ ~
Silps] = —m3 / d'xv/'-§ {(soi B e (i <a¢)2]} . (210)

where we have introduced

Z\ 32 3/2
(pﬂ: = (7) = %/ [}

3Note that there are two notions pfopercoordinate along the bulk space, the 6D and the 5D. This is
not the case for the conformal coordinate.

4One important difference between the RS model and the model considered here is that, due to the
compactifiedS! factor, the bulk ismothomogeneous in the orbifold direction.

51n Flachiet al. (2003) it has been shown that the moduli action can be equivalently derived reducing
the theory directly from six to four dimensions.
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and the 4D Planck mass is given by

ma = :%ZMS = %TERM“. (2.11)

The modulus corresponding to the positive tension brane has a kinetic term with the
“wrong” sign. As already pointed in Garrigd al.(2001) this does not necessarily
signal an instability, because it is written in a Brans—Dicke frame. One can easily
see that the kinetic terms for both moduli have the correct sign in the Einstein
frame.

Introducing the new variablegs andys (Garrigaet al, 2001; Khouryet al,
2001),

¢+ = @ coshy andyp_ = ¢ sinhy, (2.12)

the Einstein frame is given b§,, = ¢2§,., In this frame, the action (2.10) takes
the form

Slo.v) = -m? [ d'x/=3 {fz+ 20 gy + g@w} L @1

and now the kinetic terms are both positive definite.

2.3. Coupling of Moduli to Matter Fields

We note that the metric in the 4D Einstein fraifyg, does not correspond
to the metric on either of the two branes, and so matter on the branes will not
couple universally to it. Rather, 6D matter localized on the negative tension brane
couples universally tg,,, the metric induced bga, atz = z_ In the 5D theory
this corresponds to a universal couplingsff)~ (notg®)-).

To work out the coupling of and to the matter located on the negative
tension brane, we note that this kind of matter couples universally to the induced
metric on the brane. Therefore, the action for the 5D matter figl@§x", x°) is
of the form (see (2.1)):

gratt f d°x/g-LO (v, g,). (2.14)

Inserting the dimensional reduction ansatz (2.4), we obtain

smat — / d*x do. /G- & @ LO(WO, )

x / d*x do /G- a_ LA (v, g&"), (2.15)

whereg®)~ = a2§,,, ¥@(x*) are theS' zero modes of the matter fields and
the coordinate volume factorrR has been absorbed in their normalization and
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couplings. Then, matter interacts only with the modwughrough

grod-matt _ _ / d4x,/—g(s)j%, (2.16)

where 7 = T,,gy +aL®, and7,, is the 4D energy momentum tensor of
the matter fieldst®) computed with the metrig®~, T, = —(2//gg-)sS™Y
(Sg(*;)[. We note that this coupling of the moduli to the lagrangian is entirely due
to the circle being warped.

Since a small perturbatiofy_ around some v.e._ can be expressed in
terms ofp andy defined in (2.12) adp_ = a¥25¢ + 8v,” we can express the
interaction with the canonical moduli (2.16) in the Einstein frame as

Smod—matt: _g/d4x /_g{j—(s |n¢+a—3/2j'5w}' (2,17)

HereA,f is the same ag but computed with the 4D Einstein frame metijg,, so
that7 = (a_/¢)*7. Defining the canonical fields

2 -4
mp Ing and ¢ = —mpy,

RV Ne
we obtain the equations of motion for the moduli
2 . - 1 A
¢ = 7 and Oy = ——a %7, 2.18
Y= o v Tam (2.18)

so thatg'couples to the matter on the negative tension brane with a strentmp
andyr, with a quite larger strengthy a=3/?/mp.

2.4. Scales and Hierarchy

In this section we discuss the constraints for both the the dynamical moduli
R. and the fixed scale$/] andk, as well as the geometrical interpretation of the
Planck/EW hierarchy.

On the one hand, the smallest physical length scale is given by the size of
S! at the negative tension branB_. = a_R. This cannot be smaller than the
fundamental length of the theory] ~*. Since the warp factor of the circle is the
same as the Minkowski factor, the physical massegsof the first KK excitations
along the circle are of ordey R, for matter at eithez, orz_. Collider experiments
requirems: >TeV.

6 Actually, 7 coincides with the trace of the 5D energy momentum tensor.

7In the case of our interest, <1 in order to have a large hierarchy arising from the warp factors,
as we explain in Section 2.4. Moreover, we can always také) = 1. So, with a good accuracy,
p~pp~landy ~¢_ < 1.
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However, we advance here that the result for the potential can be expanded
as a power series in. = R../¢, valid when both combinations are small. In this
paper we focus on this regime, corresponding to the physical situation when the
size of the internal manifol&@" is everywheresmaller than the interbrane distance
~ £. Accordingly, this indicates that we have to assume that the separation between
the fundamental cutoffl and the curvature scalg dof the background is at least
of ordera. Supersymmetry might be needed to stabilize this hierarchy of scales,
so that in this model SUSY is not substituted by any other mechanism to stabilize
Planck/EW hierarchy. However, SUSY is a common ingredient in theories coming
from M theory, and the aim of this paper is to find out whether or notin such models
the quantum effects can stabilize the moduli. So, we can consider a scenario such
as a 6D SUSY theory with particles that get a mass of order the SUSY breaking
scale~ 1/¢.

Onthe other hand, the masgsofthe first KK excitations along the orbifold is
of ordera/¢ as inthe RS model), and the bound from collider physics/ig)(t a—*

TeV. This leads to consider the involved scales distributed as in Fig. 1.

Now we can obtain an expression for the EW/Planck hierarchy in this model.
Taking into account the considered values for the scales and moduli, and from
the relation between the 4D effective Planck mass and the higher-dimensional one
Eq. (2.11)

m ~ a 2M?,
we already note krge volumeactora—2.

Because of the warp factor in (2.2), particles livingzat with a physical
mass~ 1/¢, have a redshifted mass given lay (a, )(1/¢) = a(1/¢), as observed

In ¥
M 2 a ?TeV ~ 1019TeV o
1/R_ ~atmg 2 1009TeV [~

.

S+ QFT

mg ~ 1/R 2 10°TeV
1/¢ ~ a=iTeV ~ 10°TeV

@1y QFT

m

~afl ~TeV—1—

RS

4dim QFT

Fig. 1. The smallest scalers is set to be~ TeV. By the
condition thatSt is everywhere smaller than the orbifold,
R./¢ « 1, R= Ry is forced to lie a hierarchical factor
1/a above. SinceR_/R; = a, R_ lies another factor
1/a above. And we take the simplest possibility when
the fundamental cutoff is not far from this scale.
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from the brane at, . Supposing that these are the particles in the Standard Model,
the EW/Planck hierarchy is then given by
e = a2 ye @

m3 RM(¢M)3

~107%, (2.19)

Taking into account the optimal values for these scales, we obtain
h ~ a3, (2.20)

In contrast with the the RS model, where the hierarglepincides with the ratio
of warp factorsa here there are two additional powers. Of these, one comes from
thelarge volumefactor noted earlier. The other one comes from considering the
masses of the patrticles of ordef¢linstead ofM.

This shows how the problem of stabilization compatible with a large hierarchy
works. Having introduced a certain hierarchya between 1¢ andM in (2.19),
and the scale of the physical masses of particldg¢, we wonder whether or not
the potential (3.17) can stabilize the modRli near the optimal valueR, < ¢ and
R_>1/M, i.e., sothah?is enhanced by three more powers of the same hierarchy
a. If this happens, there are thraput powers ofa in (2.19) and three more are
generated, in this model. We address this question in Section 4.

3. POTENTIAL INDUCED BY MASSIVE BULK SCALAR FIELDS

In this section we compute the contribution to the one-loop effective potential
due to a massive bulk scalar field using dimensional regularization. Its action
is given by

1 1
S, = é/‘dD“xx[—D— m?]x — é/.de\/g+m+x2

—%/deJng_xz. (3.1)

We shall dimensionally regularize the Minkowskian directions only so that the
space-time topology is1°~1 x St x St/Z,with D — 1 = 4 — €. The bulk equa-
tion of motion is
[ , D-1 (em)?
32 — —

0=+ 0o+ R—Zag] x =0, (3.2)

with Og the 4D flat D’Alembertian. This equation admits a factorization in modes
of the form

Xnmk = eikﬂxu-’—ime/R fn(Z), (3-3)
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with f, solving

9z

[af _b=iy (22)2 + mﬁ} fo(2) = 0, (3.4)

where—k*k, = m2 + (m/R)? are the physical masses. This implies
fa(2) = 2®/2(An,(Ma2) + By Ya(Mn2)), (3.5)
wheré

v =/D2/4+ m2e2. (3.6)

Imposing Dirichlet (appropriate for an odt} parity field) boundary condi-
tions on both branes, we obtain the equation that defines implicitly the discrete
spectrum ofmy,

FO () = J,(Maa)Y, (M,) — I, (M) Y, (fna) = 0, (3.7)
where we have defined

M, = myz_, a= & _ & (3.8)

z. Ry
Even Z, parity fields obey boundary conditions of Neumann tyfe—
m./ 2)x |+ = 0, and the spectrum is determined by

FM () = i (Ma)y, (M), M)y, (fna) = 0, (3.9)

where we defined

5.0 =340 +°

— D/2
%HJV(Z),

yE @) =Ya@+ 2

%"_D/ZYV ), (3.10)

whereaL = —m,¢/2

We shall compute the effective potential in dimensional regularization. First,
we shall work out the dimensionally regularized potent&l, and then we need
to subtract theovariantdivergent piecé/%V. This is of the form (Garrigat al.,
2001)

- 1 1
div __ — 4D
T (D-5 A

Whereaf'?/2 is the relevant Seeley—DeWitt coefficient in six dimensions, we have
regularized the dimensions orthogonal to the orbifoldas 5 — ¢, and A is the

8 A coupling to the curvature of the form& R x 2 can be automatically included by addirg D(D +
1)/£? to the bulk massn and+4¢ D to the boundary masses... For Dirichlet fields the latter are
not relevant, but we keep them for generality.
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4D comoving volumef d*=<x. Schematically, then we have
V= IIDimS[VD — v, (3.11)

The dimensionally regularized potentiP is given by

dPk k? + m2 + (m/R)?
WE s e ] e

Performing the momentum integrals in (3.12),
1 (47.[,“2 R2)S+2

2(4m)?2 R4

We can split the sum in three parts: the contributions coming from the orbifold zero

mode (corresponding te = 0), the circle zero mode (correspondingnto= 0),
and the nonzero modes,

oo o
P+ RS =2 m =4+ (2m,) 4+ 2

n,m n=1

vb = _

r(s) Y (m?+ RPm2)~. (3.13)

m=1

x Y (m?+ RPm2)~° (3.14)
= 2¢r(25) + R 725”(23)—%2% m-2
= 2(r 7 ¢ 2,

X i(l + R?m2/m?)7s, (3.15)
=1

wherezy is the Riemann zeta function and the generalized zeta fungtias been
evaluated in the literature (Flachi cand Toms, 2001; Gareigal., 2000, 2001,
Goldberger and rothstein, 2000). Here we have assumed that the bulk field is even
otherwise the orbifold zero mode would not be present. The problem now reduces
to evaluating the third term of Eq. (3.14). Defining

R
X=—",
mz_
each term in the sum overn can be expressed as a contour integral

s 1 F@®
;(szmﬁ) =57 /C L =

s¥ 2,2y—s—1
= — [ tdt@+ X2 nF©),  (3.16)
7l Je

on the contout of Fig. 2.
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Fig. 2. The contour used to sum 3.16.

This can be analytically continued to the physical valug &f —2, and we do
it in Appendices A and B for Dirichlet and Neumann boundary conditions. Here,
we simply quote the final result fof, in terms ofr. = R./¢,

V(g r)= [Vi(ry) + Vo(rov(re, ro)l, (3.17)

1
(47)2R4

with asymptotic expressions for

1
Vi(Ry) ~ :I:aLlr— +a
+

+a®r, +ar2 £ a3

o0
+afrd Inre a9 In(ra,, 0 + ) aPErf, (3.18)
k=6

where the coefficiem;s‘(f) are polynomials of degrdeon the bulk masmand the
corresponding brane mass.. The first coefficiené_; is a numerical constantand
the sign ofag depends only on the type of boundary condition. We also introduced
one renormalization constant for each brane We see from (2.1) that a finite
renormalization of the brane tensiofis. gives a term in the potential of the form

1
7 R 80 (3.19)

Consequently, in the following we will include the jn. term insideso.. We

note that (3.18) are only asymptotic expansions and are valid only in the regime
r. < 1. The nonlocal pant(r,, r_) is given in the Appendices. Here, we note that

it is safely negligible in the limit of everywhere small internal sp&te« ¢, and

large warpinga « 1 (see Egs. (A16) and (A19)).
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4. STABILIZATION

We shall focuss the discussion on the stabilization of the moduli in the regime
of large orbifold sizeR.. /¢ « 1 and large warping < 1, because under this con-
dition the nonlocal part of the potentia{ R, R_) is negligible, and the potential
separates a¢ ~ (1/(47)*RY[V,(R;) + V_(R.)]. To further simplify the struc-
ture ofV, we assume a matter content with equal number of bosons and fermions.
This makes the two first terms Wi, to vanish because neithay nora_; depends
on the mass of the field.

To stabilize the modulR., we shall look for the values @b (correspond-
ing to a finite renormalization of the brane tensions) such that the conditions
of extremuma, .V = 0 together with having an effective 4D cosmological con-
stant,V [min & 10-122m¢ can be satisfied. Sindé, is essentially a polynomial in
r. = R /¢ with coefficients<1, the extrema are typically &, ~ ¢. In order for
the result (3.18) to be convergent, we will assume that actilly¢. We shall
neglect the higher powers in the potential except for the brane tension renormal-
ization terms. So the zero cosmological constant and the extremum condition for
r.are

Vi~airy +agr2+...adr3 In(uyery) =0
eV A~al +2a)r + ... +5adriIn(ury) 4+ 1/5] = 0. (4.1)

We identify In(w + £) as part of the finite renormalization of the brane tensions
a4 /€. With this, we find a solution of this equation for ~ —4a;/(3a;)?, and
aj 1
080, ~ 2~
T s
For ther _ modulus, we have
&_V ~ —a; —5a;r*[In(u_er_) —1/5] =0, (4.2)

and now we simply choose

togetav.e.vequalto . Thus, the sizes of the renormalization of the brane tensions
are

Soy ~ 1/0°,
So_ ~a 4o, (4.3)
9We can easily check that for a Dirichlet field this ratios0.6, in agreement with the assumption

made earlier. For the Neumann case, this ratio depends on the boundary and bulk masses, so that
generically, it can be made small.
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Comparing these to the bare values| ~ M*/¢ ~ a=*4(1/¢)°, we conclude that
we have to do one fine-tuning. However, this corresponds to matching the observed
value of the cosmological constant.

Next, we ask for the masses that this mechanism induces for the moduli ~
andy. A straightforward evaluation csf§ +Vimin = (8p+" +)?9%, Vit |min gives©

~ afh™?3(1/mm)? ~ Ke\?,
~ —a; Te\?. (4.4)

The mass for the modulus generated by the effective potential is large enough
not to violate Newton’s law at short distances. Its small coupling to matter on the
negative tension brane, suppressed by a planckian factor (see Eq. (2.18)), renders
it unobservable in collider experiments. On the other hand, we obtain a mass for
Y of order of someTeV. From Eq. (2.18), this modulus couples to matter with a
strength of order 2108 TeV, which is much larger than planckian but still leads to
unobservable effects.

We conclude that, depending on the bulk field content, the effective potential
can stabilize both moduli without fine-tuning, although the price to pay in this
model is the introduction of a separatian- 10° between 1¢ andM. It is shown
in Flachiet al (2003) that this feature improves with a larger number of flat extra
dimensions. That s, in toroidal compactifications of a slice of higher-dimensional
AdS the effective potential gives sizeable masses to the moduli, and the separation
betweerM and 1/¢ decreases.

m

SN N

m

5. DISCUSSION AND CONCLUSIONS

We have presented the computation of the effective potential induced by
massive bulk scalar fields nonminimally coupled to curvature in a slicsd&f
compactified on a circl&!, for both Dirichlet and Neumann boundary conditions.
This space-time is a generalization of the RS model with more extra dimensions,
and we consider it as a first approximation to brane models arisii theory
with warped additional compact extra dimensions.

We have focussed on the situation when the size of the additional Shixe
smaller than the orbifold size. We have shown the equivalence of the 6D (Einstein—
Hilbert) theory compactified on the circle with the scalar—tensor 5D theory with
an exponential potential (2.7), considered in Garggal. (2001). We followed
the analysis presented there, on the basis ofrtbduli approximationto obtain
the effective 4D gravity with two scalar fields (tneodul) of Brans—Dicke type
(2.13), describing the position of the branes on the orbifold (or equivalently, the

10gincer’(—3) > 0, and the; tabulated in the Appendices for scalar fields, the condition for negative
a; is that either we have fermion fields, or is the bulk field nonminimally coupled.
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interbrane distance and the radiussdf. As well, we have derived the couplings of
each modulus to higher-dimensional matter located on the negative tension brane.

The computation of the effective potential is especially simple when the in-
terbrane distance is larger th&. We have proposed the setup of scales that
corresponds to this regime, and shown that the Planck/EW hierarchy is generated
by a combination of a large volume effect (Antoniaelisl., 1998; Arkani-Hamed
etal, 1998, 1999) and a redshiftinduced by the warp factor (Randall and Sundrum,
1999). In this model, we have to introduce some hierarchical sepamatioi0®
between the fundamental cutoff and the curvature scale of the background. How-
ever, the separation between the EW scale and the Planckmpassgiven by
as.

The resulting Casimir energy (3.17, 3.18) can stabilize the moduli at locations
compatible with the observed Planck/EW hierarehyl0*® without fine-tuning
(except for a tuning of the positive tensien, needed to match the cosmological
constant), generating large enough masses to give unobservable effects. However,
the particular choice of the parameters of the motiel {/¢, and the mass of the
particles) can be thought of a tuning. Anyhow, as shown in Flatlail. (2003)
these features improve when we consider a toroidal compactification of a slice of
higher-dimensionahdSspaces.

Garrigaet al. (2001) raised the question that the path integral measure of a
bulk scalar field in the effective 5D theory (2.7) quantized on the warped vacuum
configuration (2.8) is ambiguously defined. The nontrivial profile of the s@alar
permits to define many different conformal frames, all of them equivalent at the
classical level. However, the path integral measure can be defined covariantly with
respect to any of them. It turns out that the term proportional to

In Inz_
Inz, | Inz.
rad z

in the potential depends on this choice. Several arguments can be given in favor of
possible ‘preferred’ frames. For instance, with a measure covariant with respect to
the 5D Einstein frame metric, this term is present. But if one chooses covariance
with respect to the 6D Einstein frame metric, there is no such term. However,
in the model presented here, there is no ambiguity in the choice of the measure
since the 6D theory is Einstein—Hilbert gravity, and there is no scalar. In the
computation presented here, the choice of the measure shows up when we subtract
the divergences in the potential Eq. (A20), covariant precisely with respect to the
6D Einstein frame metric. As a result when we take into account both the 5D modes
(the S' KK zero mode) together with the 6D ones (the KK modes excited afing

as well), we have found that there is a remaining contribution of this form (see Egs.
(3.17) and (3.18). Anyhow, it should be noted that these Coleman—Weinberg-like
terms do not play a very relevant role in stabilizing the moduli.
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6. APPENDIX A: DIRICHLET BOUNDARY CONDITIONS

In this Appendix we evaluate the sum (3.16) and show the main steps leading
to Egs. (3.17) and (3.18) for the effective potential. For the sake of clarity we
consider the case of Neumann boundary conditions separately. The integral

| = / tdt(1+ x%2) 1 In FO)1), (A1)
C

appearing in (3.16) is defined fdts > 1/2 but it can be continued to the leftin the
planes, andx = R/mz_ =r_/m. Using the asymptotic expansions of the Bessel
functions for large argument

Ky(p) = \/ge“’Cu(p),

(o) = %cu(—p) 1 o), (A2)

where

_ 2 I'(v+k+1/2) x
C.(p) ; m(zp) \

we can work out the leading term in the asymptotic expansiofr {Bi(t),
oie—oil-ax
a/at

with o = & andC* the upper and lower halves of the contour in Fig. A1. Multi-
plying and dividing by the asymptotic form &) (A3) inside the logarithm, we
can splitl into

FO)(t) ~ (1+0(1/t)) aic’, (A3)

I=li+l2= Z i/ tdt(l + x%t?) St In (- oitr/a e @M EO) (D))
cs

o=%
(A4)

- / tdt(l+x%?)~* In(-oitr/a e’“la)‘)}. (A5)
cs
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Fig. A1. We can deform the contout in figure asC; and
C» in order to commuté; andl.

Here, since the poles of the integrand lie on the real axis, we have deformed the
integration contour t@’; , for each piece (see Fig. Al).
The integrall, can be readily evaluated,

oo .
I, = Zof pdp(1+Xx2p?) 7275 In (- oin/ap &-3)
~ Jo

=/ o do(1 + x2p?) "1 S[—inm + 2(1 — a)pi]
0
_ m 1. Jal(s—1/2)1-a.

2 sx2 2 T'lA+s) x3

This integral converges féks > 1/2, and the result suggests itself as the analytic
continuation to the left of the complex planesf

We are ready to work out the contribution from this partl @b the effec-
tive potential, for the Dirichlet boundary conditions. From (3.14) and (3.13), and
performing the sum oven, this is given by

(AB)

1 (47TM2 R2)3+2 1 ﬁF(S _ 1/2)
T @y om0 O (‘5“425) R Lol
* (1‘8‘)%)' (A7)

which is finite ats — —2. Since an odd parity bulk field has no orbifold zero
mode, these are all the contributions of this form that we have for the Dirichlet
field (see Egs. (3.13) and (3.14)),

1 1
(47)% Ry
whereAz=z_ —z,.

To computel;, we separate the integration along the imaginary axis from 0
to the branch pointti/x and from the branch point ttoo,

1 1A

- == A
945 R (A8)

1/x
= [ pde(= %t in[xvape O Fo(ip)]
0
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. oo
| g ilst / pdo(x2p? — 1571 In [ /ap e Fp(ip)]
1/x

1/x
~ [ pdo =y in[rap e 4 Fo(-in)]
) o0
—e / pdp(x*p® — 1)t In[rVape “Fp(~ip)]
1/x

= —2isin[(s+ 1)7] / h pdp(x2p? — 1)1 In (mv/ap e A7 Fp(ip)),
1/x

valid for —1/2 < Rs < 0. Here we used thaE °(—z) = FP(z). The analytic
continuation ofF P to the imaginary axis gives

) 2
Fo(ip) = ;[lu(p)Ku(ap) — L(ap)K,(p)]- (A9)
We can rewritd; as

= % sin(s){Zx (a, x) + Zi (a) + Vipy(a, x)}, (A10)

Tk (a, x) = /100 ydy(y?—1)51tiIn (,/ %eay/xKV(ay/x)> .

7 (x) = /1 ydy(y? — 1) In (v2ry/x e Y¥1,(y/x)),

L, (ay/x)K, (y/x)
- u(y/x)Kv(ay/x))’ (A1)

and we note that the two first terms converge fdr/2 < Rs < 0, whereas the
last converges foRs < 0.

Using the asymptotic expansions Kf, and |, (A2), we can analytically
continue this integral to the relevant pomt= —2 and, as we will see, we will
obtain an asymptotic expansion in powerskf/¢ < 1 for Z; «. Defining the
coefficientsgy as

with

Vioy(@, x) = /100 ydy(y? —1)51In (1

InC,(p) ~ Z %,

k=1
we expand the integrand for smalland performing thg integrals

= 2 ayvil-s ik _ L(=9)I(s+k/2)
/1 dy(y" - 1)y = ——

2T (k/2) (A12)
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we obtain
Te(a )~ CI 3 r(ﬁ (:/"2/)2) P ;)k(k (A13)
Doing the same fof, (x), we have
7,00 ~ L9 i L +K/2) g ik 1 o(e2) (A14)

I'(k/2)

Now we turn toVp)(a, xs), which is already finite fos = —2. Keeping the
first term in the asymptotic expansion of the Bessel functions (A2), we obtain

Vipy(a, x) ~ /1 dy(y>—y) In(1— e’z(lfa)y/x)

1 x? 2 _2(1-a)/x
=@ ayf ;{4 —a)°Lis(e )
+ 6(1— a)x Lis(e72-37%) 4 3x? Lis(e~20/%)} (A15)

Since the argument of the polylogarithms is very small in the region we are con-
sidering, we can approximated(z) ~ z. Recalling thak = r_/m and summing
overm, to leading order we find
> it 112 onay
m*Vipy(@, r_/my~ —= —— e /-, Al6
D Mm@, /M) ~ 5 (A16)
Thus, this contribution is safely negligible in the limit of small internal space size
R«
Ignoring it, we can sum ovem the contribution coming from, using
Egs. (A10), (A11), (A13), and (A14). Since this is a power series\jrthe sum
will give rise to Riemann zeta functions. Recalling tikat r_/m, we find

I(s+k/2)

2
r(s)Zsz_X|l —sm(ns)F(s)F( S)Z 072

2
< cr(2o RIS + (-1 + 0 (oo ) (A1)

Since we are interested in this expression rsear—2, we see that the divergent
parts come from th€& functions fork = 2, 4. However, sinceg(z) has a zero at
z = —2, the pole coming fronk = 2 is cancelled. Fok = 4, instead, we have a
pole becauseg(0) is finite and nonzero. There is another poles itoming from
the divergence in the Riemann zeta functigiiz) atz = 1, that is, fork = 5.

To the contribution from the modes excited along ®le given by (A8)
together with (A17), we have to add the contribution from the circle zero mode
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(see Eq. (3.14)). This coincides with the potential in the RS model and has been
computed in the literature (Flachi and Toms, 2001; Garagal, 2000, 2001,
Goldberger and Rothstein, 2000; Toms, 2000),

1 1 In2r y 1 - /1 1
WH(E*T‘E*E'”<4”““)ﬁ4+ﬂ4}<z—4+z>

1, sz 1z, 2 10 V(@)
+ﬂ4<?|n(7)+zln(7))+z+;+ | o,

(A18)

whereIP andIﬁ are unimportant constants that can be computed as in Garriga
et al. (2000, 2001), and

_ Oo l,(ap) K,(p)
Yo@= [ o (1_ () Ku(ap)>' (A19)

This function behaves @& for a « 1, so it gives rise to a negligible contribution
to the potential.
We see that the divergence in the contribution due to the circle zero mode

Eq. (A18) is exactly cancelled by the pole correspondirigto4 in Eq. (A17). So,
we are left with the (higher-dimensional) divergence correspondikg+d only.
This divergence is removed subtracting the appropriate combination of geometrical
invariant in the D — 1) + 1+ 1 regularized space-time, given by the Seeley—
DeWitt coefficientag,». Since our space is maximally symmetric, all the geometric
invariants are proportional to some power of the curvature radius and are equivalent
to brane tension terms. So, the computaticas@fis trivial up to a global numerical
factor. On the other hand, this can be fixed imposing that the pole term is exactly
cancelled. With this, we obtain

1 1

[—5 - —5} R
.

aw 11 o 11[/eN eNT]_ 1
v —;zaﬁ/zo‘ze_sRZ) () ]R_E
N [|n(4/e) B In(zg/ﬁ)} R + finite (A20)

5
Z

whereA = [ d*x is the comoving 4D volume. Comparing with (A17), we see that
the global constant factor must bgs43. The firstg coefficients are listed below.
Finally, adding up (A8), (A17), (A18), and (A20), we find

]

V(Ry) ~ (477);”?4 [kglak{ri + (=)} +afriinry +rtinr_}

+as{r> In(uer_) —r2In(uer_)} + Z2r?
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+HIT+ V(OD)(a))rf + O(e_z(l_a)/r):| , (A21)

where we have redefined the renormalization congtagain, and the coefficients
ay are

Q1
1= %1
1 /
Q = égR(_4)!
_ 4B B
%= g progRk =4, for k=13678...
a = —2p(—=2)p2 for k=2,
as = Pa,
4
% = 3Fs (A22)

For Dirichlet boundary conditions, the values of the figstoefficients, which
depend only on the bulk mass of the fialgd are

1 = ((Me)* + 6)/2,

B2 = (~(me)* - 6)/4,

Bs = —(MO)*(Me)* + 6)/24,

Ba = ((M)* + 9(Me)? + 18)/8,

Bs = ((Me)°® — 10(me)* — 168(me)? — 432)/80. (A23)
From this, it is clear that the effective potential induced by bulk fields can be

castas (3.17) and (3.18), understanding that for Dirichlet boundary conditions the
coefficientsa;” = a;.

7. APPENDIX B: NEUMANN BOUNDARY CONDITIONS

For the Neumann boundary conditions, we first realize Bi#lt(t) ~ t—2 for
t — 0. Thus, if we use the same integral representation on the same céntour
as in the previous case, we obtain an unwanted contribution from this point (a
‘zero mode’ contribution that has already been taken into account in Eq. (3.14)).
However, we can get rid of this contribution, consideridg ) (t) instead of
F(N)(t). Obviously, this does not affect the result sirtéehas no zero inside
C. Moreover, it allows us to deform this contour inflp without crossing any
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singularity. So in this case the appropriate integral representation is
00 1 d
1+ Xx2M2)~° = —/ dt(1 4 x?t?)~s — In (t?FMN(t
n;(Jr W)= o J X G In(EFRO)

2
_ ﬁ tdt(1+ x2S In (2FM(D).  (B1)
7l Jc

Multiplying and dividing inside the logarithm by the leading asymptotic be-
havior oft?F ()| except for a minus sign (which is the phase tRaicquires when
we integrate alongs, now we splitl into

o=%

—ht= Y { [ttty =t in oin vate o ) - (@2)

- f tdt(1+ x’t?) St In(oin /a3t ) L. (B3)
c3
The integrall, can be readily evaluated,

I, = Zo/ pdo(1+ x%p?) 1S In(oin /a3 /p)
p 0

_ / " o do(1 4 x20%) i + 2(1— a)pi]
0

x 1. Jal(s—1/2)1-a
~ 2sx2 2 T'(l+s) x3

As before, this integral converges fRr> 1/2, and we continue the result to the
left of the complex plane. We note that the only difference with respect to the
Dirichlet case is the sign of the first term. Taking into account that in the Neumann
case we also have the contribution coming from the orbifold zero mode in (3.14),
we get

(B4)

1 1 1 Az:|. (B5)

3 1
S [P T G | W —
(4 )2 R [ 2§R( ) 945 R
To computel;, we separate the integration along the imaginary axis from 0 to the
branch pointti /x and from the branch point too,

l1 = —2isin[(s+ 1)r] / h pdp(x2p% — 1) In (n/ap e EMN(i) py),
1/x
(B6)

11n the Dirichlet casé (P) ~ constant fot — 0, so we do not need any powertdab smooth it.
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valid for —1/2 < Rs < 0. Here we used thaEN(—z) = FN(z). The analytic
continuation ofF N to the imaginary axis gives

FMGp) = 2 [i (o), 1(80) — 11 1(@n 1)), (B7)
where now
£ 400) = Loap) + VD2, )
€ 4(0) = K al) P2 ) (88)
We can rewritd; as
Iy = % singrs) {Zu(a, x) + Zi (@) + VV(a, x)} , (B9)

where

Ik(a, x) = / ydy(y? —1)"*"*In (,/ % ik 1(ay/X))

109 = [y - 1 n (V2ry/x e L 00)

(N) — > 2_qys-1 _i\;:l(aY/X)Kil(Y/X) .
Ve = [ yane - ”(l L0 1@y/x)
(B10)

As in the previous case, the last term is finite’R8 < 0 behaves, to leading order,
like
Von(@a, x) ~ 1 g 2-/r- (B11)
W 2(1—a)y '

From (A2), we can obtain the asymptotic expansions foy and«,_1,

() = /; e7C= (1),

. er
i1(p) = Wci L +0oEe™”), (B12)
with
*_ D/2
¢ (o) = Cya(p) + VP2 1y,
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Defining the coefficientg; through

o~ B
+
Inc,_; ~ E —,
k=1

~H

ok
the expression analogous to (A17) that we obtain is

SN SXE s > ['(s+k/2)
F(s)r;m 2 —-li = — sin@Es)I(r(-s) 2 WgR(szr k)

2_
LT AT 0 (e )
(B13)

Subtracting the divergences as in the previous case, we obtain for Neumann
boundary conditions a potential of the form

o1 o (oK L [ qykaerk
V(rs) (n 2R |:k_X—:1{ak ri + (1 r’}

+{ajrdInry +a;r? Inr_} +{adr? In(uer_) —agr> In(uer_)}

+ Tt + (I + Viy@)r? + 0(e 22/ f—)} , (B14)
where
0 _ *© 3 _ i;_l(ap) K;r_l(/))
V(N)(a) B /o do.p”in (1 i\il(l)) Kv_l(ap)) ’ (B15)

70 andZ? are unimportant constants defined as in Gareigal.(2000, 2001), and
the coefficients;" are

1
+ [ —
1= 915
3 /
aéE:_EgR(_4)
4 +
= ¢§R(k—4) for k=1,3,6,7,8..

&= Kk-aKk-2
a5 = —2¢A(-2)p5 for k=2,
a; =By

" =
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For Neumann boundary conditions, the values of thegigiefficients, depending
on the bulkm and branan,. masses of the field,

B = 2+ met 4+ (Mme)?)/2

By = (—4+ 8mwt — (m)? + 2(me)?)/8

B3 = (8+ 12mot — 12(M.t)? + (Me£)® + 6(me)? — 6m.e(ml)? — (me)*)/24

B = (16— 32m_ L — 48(M..)? + 16(m..€)® — (m..£)* — 8(me)?
—48m.L(me)? + 8(m=£)3(me)? — 8(me)*)/64

B = (32+ 80m.t — 40(M..£)? 4 100(M..£)® — 20(M.0)* + (M.e)®
—16(m¢)? — 20m..£(me)? 4+ 100M..£)3(me)? — 10(m..£)3(me)?
—20(me)* 4 30m,.£(me)* + 2(m¢)®)/160.

From these results it is straightforward to show that the effective potential induced
by bulk fields can be generally written in the form of Egs. (3.17), and (3.18).
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